今天养殖艺技术网的小编给各位分享什么是原函数的养殖知识,其中也会对什么是直接函数?(什么是直接函数什么是反函数)进行专业解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
什么是直接函数?
与反函数互相对应。若A为B的反函数,则B就是A的直接函数;反之亦然,因为A、B互为对方反函数,即同时B也是A的反函数,所以A就是B的直接函数。例如:y=arcsinx 是 x=siny 的反函数,那么 x=siny 就是y=arcsinx 的直接函数;同时,x=siny 也是 y=arcsinx 的反函数,那么y=arcsinx 就是 x=siny 的直接函数。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数和原函数的关系?
原函数是对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。一般地,设函数y=f(x)在某个区间内有导数,如果在这个区间y'>0,那么函数y=f(x)在这个区间上为增函数:如果在这个区间y'<0,那么函数y=f(x)在这个区间上为减函数;如果在这个区间y'=0,那么函数y=f(x)在这个区间上为常数函数。扩展资料:函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。例如:f(x)=|x|在x=0处虽连续,但不可导(左导数-1,右导数1);上式中,后两个式子可以定义为函数在x0处的左右导数:左导数:f(x-)=-1;右导数:f(x-)=1。若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个
什么是原函数可导?
原函数可导,导函数不一定连续。举例说明如下:当x不等于0时,f(x)=x^2*sin(1/x);当x=0时,f(x)=0这个函数在(-∞,+∞)处处可导。导数是f'(x):当x不等于0时,f'(x)=2xsin(1/x)-cos(1/x);当x=0时,f'(x)=lim{[f(x)-f(0)]/(x-0),x->0}=lim[xsin(1/x),x->0]=0lim[f'(x),x->0]不存在,所以在x=0这一点处,f'(0)存在但f'(x)不连续。
原函数与函数的关系?
原函数求导是函数,函数积分是原函数
常见函数的原函数?
若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。
函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。
例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。
周期函数原函数性质?
周期函数的图象的形状随x的变化周期性的变化。(用课件加以说明。)强调定义中的“当x取定义域内的每一个值”令(x+T)2=x2,则x2+2xT+T2=x2所以2xT+T2=0, 即T(2x+T)=0所以T=0或T=-2x强调定义中的“非零”和“常数”。例:三角函数sin(x+T)=sinxcos(x+T)=cosx中的T取2π