今天养殖艺技术网的小编给各位分享物理层标准有什么的养殖知识,其中也会对物理层标准涉及的内容是???(物理层标准涉及的内容是指)进行专业解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
物理层标准涉及的内容是???
物理层标准涉及的内容是???
1.机械特性 也叫物理特性,指明通信实体间硬件连接接口的机械特点,如接口所用接线.
2.电气特性 规定了在物理连接上,导线的电气连接及有关电路的特性,
3.功能特性 指明物理接口各条信号线的用途(用法),包括:接口线功能的规定方法
4.规程特性 指明利用接口传输比特流的全过程及各项用于传输的事件发生的合法顺序
吉比特以太网的物理层的标准是什么?其中基于光纤通道的物理层标准使用的介质哪些?
集线器 网卡 网线等等
集线器的英文称为“Hub”。“Hub”是“中心”的意思,集线器的主要功能是对接收到的信号进行再生整形放大,以扩大网络的传输距离,同时把所有节点集中在以它为中心的节点上。它工作于OSI(开放系统互联参考模型)参考模型第一层,即“物理层”。集线器与网卡、网线等传输介质一样,属于局域网中的基础设备,采用CSMA/CD(一种检测协议)访问方式。
物理层有哪些协议?
RS-232-C
RS-232-C是OSI基本参考模型物理层部分的规格,它决定了连接器形状等物理特性、以0和1表示的电气特性及表示信号意义的逻辑特性。
RS-232-C是EIA发表的,是RS-232-B的修改版。本来是为连接模拟通信线路中的调制解调器等DCE及电传打印机等DTE拉接口而标准化的。现在很多个人计算机也用RS-232-C作为输入输出接口,用RS-232-C作为接口的个人计算机也很普及。
RS-232-C的如下特点:采用直通方式,双向通信,基本频带,电流环方式,串行传输方式,DCE-DTE间使用的信号形态,交接方式,全双工通信。RS-232-C在ITU建议的V.24和V.28规定的25引脚连接器在功能上具有互换性。
RS-232-C所使用的连接器为25引脚插入式连接器,一般称为25引脚D-SUB。DTE端的电缆顶端接公插头,DCE端接母插座。
RS-232-C所用电缆的形状并不固定,但大多使用带屏蔽的24芯电缆。电缆的最大长度为15m。使用RS-232-C在200K位/秒以下的任何速率都能进行数据传输。
RS-449
RS-449是1977年由EIA发表的标准,它规定了DTE和DCE之间的机械特性和电气特性。RS-449是想取代RS-232-C而开发的标准,但是几乎所有的数据通信设备厂家仍然采用原来的标准,所以RS-232-C仍然是最受欢迎的接口而被广泛采用。
RS-449的连接器使用ISO规格的37引脚及9引脚的连接器,2次通道(返回字通道)电路以外的所有相互连接的电路都使用37引脚的连接器,而2次通道电路则采用9引脚连接器。
RS-449的电特性,对平衡电路来说由RS-422-A规定,大体与V.11具有相同规格,而RS-423-A大体与V.10具有相同规格。
V.35
V.35是通用终端接口的规定,其实V.35是对60-108kHz群带宽线路进行48Kbps同步数据传输的调制解调器的规定,其中一部分内容记述了终端接口的规定。
V.35对机械特性即对连接器的形状并未规定。但由于48Dbps-64Kbps的美国Bell规格调制解调器的普及,34引脚的ISO2593被广泛采用。模拟传输用的音频调制解调器的电气条件使用V.28(不平衡电流环互连电路),而宽频带调制解调器则使用平衡电流环电路。
X.21
X.21是对公用数据网中的同步式终端(DTE)与线路终端(DCE)间接口的规定。主要是对两个功能进行了规定:其一是与其他接口一样,对电气特性、连接器形状、相互连接电路的功能特性等的物理层进行了规定;其二是为控制网络交换功能的网控制步骤,定义了网络层的功能。在专用线连接时只使用物理层功能,而在线路交换数据网中,则使用物理层和网络层的两个功能。X.21接口用的连接器引脚也只用15引脚电气特性分别参照V系列接口电气条件的V.10和V.11。数字网的同步都是从属于网络主时钟的从属同步。
osi 7层模型 物理层里面 到底有多少条标准?
物理层的一些重要标准
物理层的一些标准和协议早在OSI/TC97/C16 分技术委员会成立之前就已制定并在应用了,OSI也制定了一些标准并采用了一些已有的成果.下面将一些重要的标准列出,以便读者查阅.ISO2110:称为"数据通信----25芯DTE/DCE接口连接器和插针分配".它与EIA(美国电子工
业协会)的"RS-232-C"基本兼容。ISO2593:称为"数据通信----34芯DTE/DCE----接口连接器和插针分配"。ISO4092:称为"数据通信----37芯DTE/DEC----接口连接器和插针分配".与EIARS-449兼容。CCITT V.24:称为"数据终端设备(DTE)和数据电路终接设备之间的接口电路定义表".其功能与EIARS-232-C及RS-449兼容于100序列线上.
什么是物理层
无线局域网的频率有哪个几个标准啊,分别是多少?
有:IEEE802.11b,IEEE802.11,IEEE802.11g。
IEEE802.11b
采用2.4ghz频段,调制方式采用补偿码键控(CKK),有“3”个不重叠的传输通道。传输速率可自动从11Mbps到5.5Mbps,或,基于直接序列扩频技术可达2mbps和1mbps,以保证设备的正常运行和稳定。
IEEE802.11
标准物理层扩展为指定使用5GHz频段。该标准使用OFDM调制技术,具有“12”个非重叠传输通道,传输速率从6Mbps到54Mbps不等。但是,这个标准与ieee802.11b不兼容。对无线AP和无线网卡的支持,在市场上比较少见。
IEEE802.11g
该标准有“三个”不重叠的传输通道。虽然它也运行在2.4GHz,但它与ieee802.11b向后兼容,并且由于它使用与ieee802.11a标准相同的OFDM(正交频分)调制模式,因此它可以为无线局域网实现54Mbps的数据传输速率。
扩展资料:
在802.11b/g的情况下,可用的信道将在频率上重叠和交织,导致在网络覆盖的服务区域内只有3个非重叠信道。因此,该服务区域的用户只能共享这三个通道的数据带宽。
由于802.11b/gWLAN标准使用最常用的2.4ghz无线电频带,这三个频道亦会受到其他无线电来源的干扰。频谱还用于各种应用,如蓝牙无线连接,移动电话,甚至微波炉,干扰可能进一步限制WLAN用户可用的带宽。
在传输速率为54Mbps的802.11g和802.11a标准中,802.11a在信道可用性方面更有优势。这是因为802.11a工作在更慷慨的5GHz频段,有12个不重叠的信道,而802.11b/g只有11个,只有3个不重叠的信道(信道1、信道6、信道11或信道13)。
因此802.11g在协调相邻接入点的属性方面不如802.11a,由于802.11a的12个非重叠通道为接入点提供了更多的选择,可以有效地减少通道之间的冲突。
OSI的物理层有那些标准
物理层的一些标准和协议早在OSI/TC97/C16 分技术委员会成立之前就已制定并在应用了,
OSI也制定了一些标准并采用了一些已有的成果.下面将一些重要的标准列出,以便读者查阅.
ISO2110:称为"数据通信----25芯DTE/DCE接口连接器和插针分配".它与EIA(美国电子工业
协会)的"RS-232-C"基本兼容.
ISO2593:称为"数据通信----34芯DTE/DCE----接口连接器和插针分配".
ISO4092:称为"数据通信----37芯DTE/DCE----接口连接器和插针分配".与EIARS-449兼容.
CCITT V.24:称为"数据终端设备(DTE)和数据电路终接设备之间的接口电路定义表".其功
能与EIARS-232-C及RS-449兼容于100序列线上
10Gbps以太网的特点
万兆以太网技术简介
以太网采用CSMA/CD机制,即带碰撞检测的载波**多重访问。千兆以太网接口基本应用在点到点线路,不再共享带宽。碰撞检测,载波**和多重访问已不再重要。千兆以太网与传统低速以太网最大的相似之处在于采用相同的以太网帧结构。万兆以太网技术与千兆以太网类似,仍然保留了以太网帧结构。通过不同的编码方式或波分复用提供10Gbit/s传输速度。所以就其本质而言,10G以太网仍是以太网的一种类型。
10G以太网于2002年7月在IEEE通过。10G以太网包括10GBASE-X、10GBASE-R和10GBASE-W。10GBASE-X使用一种特紧凑包装,含有1个较简单的WDM器件、4个***和4个在1300nm波长附近以大约25nm为间隔工作的激光器,每一对发送器/***在3.125Gbit/s速度(数据流速度为2.5Gbit/s)下工作。10GBASE-R是一种使用64B/66B编码(不是在千兆以太网中所用的8B/10B)的串行接口,数据流为10.000Gbit/s,因而产生的时钟速率为10.3Gbit/s。10GBASE-W是广域网接口,与SONET OC-192兼容,其时钟为9.953Gbit/s数据流为9.585Gbit/s。
1. 10G串行物理媒体层
10GBASE-SR/SW传输距离按照波长不同由2m到300m。10GBASE-LR/LW传输距离为2m到10km。10GBASE-ER/EW传输距离为2m到40km。
2. PMD(物理介质相关)子层
PMD子层的功能是支持在PMA子层和介质之间交换串行化的符号代码位。PMD子层将这些电信号转换成适合于在某种特定介质上传输的形式。PMD是物理层的最低子层,标准中规定物理层负责从介质上发送和接收信号。
3. PMA(物理介质接入)子层
PMA子层提供了PCS和PMD层之间的串行化服务接口。和PCS子层的连接称为PMA服务接口。另外PMA子层还从接收位流中分离出用于对接收到的数据进行正确的符号对齐(定界)的符号定时时钟。
4. WIS(广域网接口)子层
WIS子层是可选的物理子层,可用在PMA与PCS之间,产生适配ANSI定义的SONET STS-192c传输格式或ITU定义SDH VC-4-64c容器速率的以太网数据流。该速率数据流可以直接映射到传输层而不需要高层处理。
5. PCS(物理编码)子层
PCS子层位于协调子层(通过GMII)和物理介质接入层(PMA)子层之间。PCS子层完成将经过完善定义的以太网MAC功能映射到现存的编码和物理层信号系统的功能上去。PCS子层和上层RS/MAC的接口由XGMII提供,与下层PMA接口使用PMA服务接口。
6. RS(协调子层)和XGMII(10Gbit/s介质无关接口)
协调子层的功能是将XGMII的通路数据和相关控制信号映射到原始PLS服务接口定义(MAC/PLS)接口上。XGMII接口提供了10Gbit/s的MAC和物理层间的逻辑接口。XGMII和协调子层使MAC可以连接到不同类型的物理介质上。
由于10G以太网实质上是高速以太网,所以为了与传统的以太网兼容必须采用传统以太网的帧格式承载业务。为了达到10Gbit/s的高速率可以采用OC-192c帧格式传输。这就需要在物理子层实现从以太网帧到OC-192c帧格式的映射功能。同时,由于以太网的原设计是面向局域网的,网络管理功能较弱,传输距离短并且其物理线路没有任何保护措施。当以太网作为广域网进行长距离、高速率传输时必然会导致线路信号频率和相位产生较大的抖动,而且以太网的传输是异步的,在接收端实现信号同步比较困难。因此,如果以太网帧要在广域网中传输,需要对以太网帧格式进行修改。
以太网一般利用物理层**殊的10B(Byte)代码实现帧定界的。当MAC层有数据需要发送时,PCS子层对这些数据进行8B/10B编码,当发现帧头和帧尾时,自动添加特殊的码组SFD(帧起始定界符)和EFD(帧结束定界符);当PCS子层收到来自底层的10B编码数据时,可很容易地根据SFD和EFD找到帧的起始和结束从而完成帧定界。但是SDH中承载的千兆以太网帧定界不同于标准的千兆以太网帧定界,因为复用的数据已经恢复成8B编码的码组,去掉了SFD和EFD。如果只利用千兆以太网的前导(Preamble)和帧起始定界符(SFD)进行帧定界,由于信息数据中出现与前导和帧起始定界符相同码组的概率较大,采用这样的帧定界策略可能会造成接收端始终无法进行正确的以太网帧定界。为了避免上述情况,10G以太网采用了HEC策略。
IEEE802.3 HSSG小组为此提出了修改千兆以太网帧格式的建议,在以太网帧中添加了长度域和HEC域。为了在定帧过程中方便查找下一个帧位置,同时由于最大帧长为1518字节,则最少需要11个比特(=2048),所以在复接MAC帧的过程中用两个字节替换前导头两个字节作为长度字段,然后对这8个字节进行CRC-16校验,将最后得到的两个字节作为HEC插入SFD之后。
10G WAN物理层并不是简单的将以太网MAC帧用OC-192c承载。虽然借鉴了OC-192c的块状帧结构、指针、映射以及分层的开销,但是在SDH帧结构的基础上做了大量的简化,使得修改后的以太网对抖动不敏感,对时钟的要求不高。具体表现在:减少了许多开销字节,仅采用了帧定位字节A1和A2、段层误码监视B1、踪迹字节J0、同步状态字节S1、保护倒换字节K1和K2以及备用字节Z0,对没有定义或没有使用的字节填充00000000。减少了许多不必要的开销,简化了SDH帧结构,与千兆以太网相比,增强了物理层的网络管理和维护,可在物理线路上实现保护倒换。其次,避免了繁琐的同步复用,信号不是从低速率复用成高速率流,而是直接映射到OC-192c净负荷中。
10G以太局域网和10G以太广域网(采用OC-192c)物理层的速率不同,10G以太局域网的数据率为10Gbit/s,而10G以太广域网的数据率为9.58464Gbit/s(SDH OC-192c,是PCS层未编码前的速率),但是两种速率的物理层共用一个MAC层,MAC层的工作速率为10Gbit/s。采用什么样的调整策略将10GMII接口的10Gbit/s传输速率降低,使之与物理层的传输速率9.58464Gbit/s相匹配,是10G以太广域网需要解决的问题。目前将10Gbit/s速率适配为9.58464Gbit/s的OC-192c的调整策略有3种:
在GMII接口处发送HOLD信号,MAC层在一个时钟周期停止发送;
利用“Busy idle”,物理层向MAC层在IPG期间发送“Busy idle”,MAC层收到后,暂停发送数据。物理层向MAC层在IPG期间发送“Normal idle”, MAC层收到后,重新发送数据;
采用IPG延长机制:MAC帧每次传完一帧,根据平均数据速率动态调整IPG间隔。
为什么物理层不需要地址?(计算机网络原理)
因为在物理层,一个网络中的所有主机都能接收到被广播的数据流,所以不需要地址