今天养殖艺技术网的小编给各位分享光电通信分类标准有哪些的养殖知识,其中也会对光纤通信技术包括以下哪些技术和系统(光纤通信技术的概念)进行专业解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

光纤通信技术包括以下哪些技术和系统

来自胜为光纤跳线的消息:2015年9月6日,国务院办公厅正式发布《三网融合推广方案》,方案明确提出,将在近年内,在全国大多数地区推广实施三网融合方案。那么,这个方案发布,会对普通用户带来哪些新体验?会对光纤通信技术产生哪些影响呢?

所谓三网融合,指的就是手机、电视、电脑使用的电信网、广播电视网、互联网三大网络通过技术改造,三网共享资源,形成我中有你、你中有我的互联网格局。对于普通用户来说,将来使用的服务会更加丰富多样化,手机、电视、电脑其中任意一个都可以具备其它两个的功能。三网共享资源后,只需要一条大容量的光纤通信线路,就可以实现众多功能,服务更方便 ,使用更简单。

三网融合不可避免地要涉及到宽带技术的主体—光纤通信技术。三网融合的目的就是想通过一个网络来提供统一的业务。这样一来,这个业务就会变得数据量大,需求量大,服务质量要求高。有且只有宽带技术中的光纤通信技术才能作为三网融合后的一个理想平台和主要信号传输载体。如此一来,光纤通信技术就会以超越近年来N倍的速度开始更加快速的发展。

G655光纤和G652光纤有什么不同?

对于WDM系统:G.655传输性能比G.652要强。不仅衰耗小、而且色散补偿的也小;传输距离也就远。

对于SDH系统:一般是小于40km用652光纤,距离远于40km,就得用655光纤了!

G.652光纤:(色散未移位光纤)
应用最广泛的光纤,具有1310nm和1550nm两个窗口,1310nm处色散小但衰耗大,1550nm处衰耗小但色散大
G.653光纤(1550性能最佳光纤):
适用于TDM系统,但由于存在四波混频效应,不适于WDM系统。
色散移位光纤,通过改变波导结构,将零色散点从1310nm处移位到1550nm处,使1550nm窗口色散和衰减都很低。
G.653光纤的最大弱点就是存在四波混频效应
G.654光纤:(1550衰减最小光纤)
重点在于减小1550的衰减,主要用于海底光纤通信
G.655光纤:(G.653光纤改进版)
将零色散点移位到1550附近,而不是象G.653一样移位到1550上,消除了四波混频,适用于WDM系统
(2)关于SDH和DWDM:
各自的特点就不说了,一句两句说不清楚,找个资料看看吧,我只说关系——多个SDH通过波分复用形成DWDM

常见的光纤是哪几种

光纤的种类很多,分类方法也是各种各样的。
从材料角度分
按照制造光纤所用的材料分类,有石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤等。
塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。目前通信中普遍使用的是石英系光纤。
按传输模式分
按光在光纤中的传输模式可分为:单模光纤和多模光纤。
多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。
============================================
多模光纤
多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤
单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。这就是说在1.31μm波长处,单模光纤的总色散为零。从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
====================================
最佳传输窗口为依据
按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。
常规型:光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm。
色散位移型:光纤生产厂家将光纤传输频率最佳化在两个波长的光上,如:1300μm和1550μm。
我们知道单模光纤没有模式色散所以具有很高的带宽,那么如果让单模光纤工作在1.55μm波长区,不就可以实现高带宽、低损耗传输了吗?但是实际上并不是这么简单。常规单模光纤在1.31μm处的色散比在1.55μm处色散小得多。这种光纤如工作在1.55μm波长区,虽然损耗较低,但由于色散较大,仍会给高速光通信系统造成严重影响。因此,这种光纤仍然不是理想的传输媒介。
为了使光纤较好地工作在1.55μm处,人们设计出一种新的光纤,叫做色散位移光纤(DSF)。这种光纤可以对色散进行补偿,使光纤的零色散点从1.31μm处移到1.55μm附近。这种光纤又称为1.55μm零色散单模光纤,代号为G653。
G653光纤是单信道、超高速传输的极好的传输媒介。现在这种光纤已用于通信干线网,特别是用于海缆通信类的超高速率、长中继距离的光纤通信系统中。
色散位移光纤虽然用于单信道、超高速传输是很理想的传输媒介,但当它用于波分复用多信道传输时,又会由于光纤的非线性效应而对传输的信号产生干扰。特别是在色散为零的波长附近,干扰尤为严重。为此,人们又研制了一种非零色散位移光纤即G655光纤,将光纤的零色散点移到1.55μm 工作区以外的1.60μm以后或在1.53μm以前,但在1.55μm波长区内仍保持很低的色散。这种非零色散位移光纤不仅可用于现在的单信道、超高速传输,而且还可适应于将来用波分复用来扩容,是一种既满足当前需要,又兼顾将来发展的理想传输媒介。
还有一种单模光纤是色散平坦型单模光纤。这种光纤在1.31μm到1.55μm整个波段上的色散都很平坦,接近于零。但是这种光纤的损耗难以降低,体现不出色散降低带来的优点,所以目前尚未进入实用化阶段。
按折射率分布分
按折射率分布情况分:阶跃型和渐变型光纤。
阶跃型:光纤的纤芯折射率高于包层折射率,使得输入的光能在纤芯一包层交界面上不断产生全反射而前进。这种光纤纤芯的折射率是均匀的,包层的折射率稍低一些。光纤中心芯到玻璃包层的折射率是突变的,只有一个台阶,所以称为阶跃型折射率多模光纤,简称阶跃光纤,也称突变光纤。这种光纤的传输模式很多,各种模式的传输路径不一样,经传输后到达终点的时间也不相同,因而产生时延差,使光脉冲受到展宽。所以这种光纤的模间色散高,传输频带不宽,传输速率不能太高,用于通信不够理想,只适用于短途低速通讯,比如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。这是研究开发较早的一种光纤,现在已逐渐被淘汰了。
为了解决阶跃光纤存在的弊端,人们又研制、开发了渐变折射率多模光纤,简称渐变光纤。
渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高次模的光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。渐变光纤的包层折射率分布与阶跃光纤一样,为均匀的。渐变光纤的纤芯折射率中心最大,沿纤芯半径方向逐渐减小。由于高次模和低次模的光线分别在不同的折射率层界面上按折射定律产生折射,进入低折射率层中去,因此,光的行进方向与光纤轴方向所形成的角度将逐渐变小。同样的过程不断发生,直至光在某一折射率层产生全反射,使光改变方向,朝中心较高的折射率层行进。这时,光的行进方向与光纤轴方向所构成的角度,在各折射率层中每折射一次,其值就增大一次,最后达到中心折射率最大的地方。在这以后。和上述完全相同的过程不断重复进行,由此实现了光波的传输。可以看出,光在渐变光纤中会自觉地进行调整,从而最终到达目的地,这叫做自聚焦
按工作波长分
按光纤的工作波长分类,有短波长光纤、长波长光纤和超长波长光纤。
常用光纤规格
单模: 8/125μm, 9/125μm, 10/125μm
多模: 50/125μm 欧洲标准 62.5/125μm 美国标准
工业,医疗和低速网络: 100/140μm, 200/230μm
塑料光纤: 98/1000μm 用于汽车控制。

什么是光电产业

光纤通信技术包括以下哪些技术和系统

光电产业是随着光电技术的兴起而形成的一门高新技术产业。

根据美国光电产业发展协会(OIDA)的定义,光电是指光子学和电子学的交集领域,这个交集产生的技术就是光电技术。

光电产业,是以光电技术为核心所构成的各类零件、组件、设备以及应用市场的总和。换言之,光电产业是制造光电元件,或采用光电元件为关键性零部件的设备、器具及系统的所有商业行为。

扩展资料

21世纪以来,世界光电产业发展迅速。2009年,全球光电产业的市场规模己达1万亿美元。国外光电子产业主要在美国、西欧和日本。

中国光电技术产品市场十几年来始终保持在两位数的高速增长速度。

随着信息技术、激光加工技术、激光医疗与光子生物学、激光全息、光电传感、显示技术等光电技术的快速发展以及光电技术与数字技术、多媒体技术、机电技术等领域的结合与渗透,我国已经形成市场可观、发展潜力巨大的光电产业。

参考资料来源:百度百科-光电产业

光电子器件主要包括哪些种类?

光电子器件主要包括这两种种类:

1、 光纤通讯器件 其中包括光有源器件(例如激光器,光收发模块等),光无源器件(例如光纤耦合器,光纤光开关,光分波器等)。

2、光电照明器件 例如 LED灯具,或者说其它发光照明灯具,或发光装饰灯具。终上,可以理解为, 产品需要电转光,或光转电, 或其它光电相关功能,就属于光电器件中。

利用电-光子转换效应制成的各种功能器件。光电子器件的设计原理是依据外场对导波光传播方式的改变,它也有别于早期人们袭用的光电器件。

光电子器件是光电子技术的关键和核心部件,是现代光电技术与微电子技术的前沿研究领域,是信息技术的重要组成部分。

光电子器件应用范围十分广阔,如家用**机、手机相机、夜***、微光**机、光电瞄具、红外探测、红外制导、红外遥感、指纹探测、**探测、医学检测和**等等,从**产品扩展到民用产品,其使用范围难以胜数,是一个巨大的产业。

通信行业的划分标准

你这个应该属于有线传输吧,这主要属于基础网络了,主要学习传输网的一些理论概念和目前的一些新技术咯,线路其实很简单,但是要做好又是很难,正如它的地位,不起眼,但是很重要

光电信息科学与工程属于什么类专业?

光电传感器的常见类型有哪些

光电传感器常见有几种分类:

⑴槽型
把一个光发射器和一个***面对面地装在一个槽的两侧的是槽形光电。
发光器能发出红外光或可见光,在无阻情况下光***能收到光。但当被检测物体从槽中通过时,光被遮挡,光电开关便动作。输出一个开关控制信号,切断或接通负载电流,从而完成一次控制动作。槽形开关的检测距离因为受整体结构的限制一般只有几厘米。

⑵对射

若把发光器和收光器分离开,就可使检测距离加大。由一个发光器和一个收光器组成的光电开关就称为对射分离式光电开关,简称对射式光电开关。它的检测距离可达几米乃至几十米。使用时把发光器和收光器分别装在检测物通过路径的两侧,检测物通过时阻挡光路,收光器就动作输出一个开关控制信号。

⑶镜面反射

把发光器和收光器装入同一个装置内,在它的前方装一块反光板,利用反射原理完成光电控制作用的称为反光板反射式(或反射镜反射式)光电开关。正常情况下,发光器发出的光被反光板反射回来被收光器收到;一旦光路被检测物挡住,收光器收不到光时,光电开关就动作,输出一个开关控制信号。

⑷漫反射

它的检测头里也装有一个发光器和一个收光器,但前方没有反光板。正常情况下发光器发出的光收光器是找不到的。当检测物通过时挡住了光,并把光部分反射回来,收光器就收到光信号,输出一个开关信号。

光通讯、光电公司取名

光驰信扬科技,你觉得如何?
“光驰”是指以光速,飞驰传播。
“信扬”是指当今信息时代,你们的公司也要有一片天地,展示、宣扬。

反射式光电传感器常见的有哪些类型

光电传感器通常分为对射型,镜面反射型和直接反射型,你所说的反射型应该是指最后那种直接反射型,这种光电传感器已经是一个子分类了,再细的话,根据检测光束方面,还可以分为红外光型,红光型等,也有窄光束型,也可以根据输出来分为晶体管输出型,继电器输出型,模拟量输出型,在选型时还重要的是选择检测距离。

站长微信号

微信扫一扫加好友

返回
顶部