今天养殖艺技术网的小编给各位分享典型的组件标准有哪些要求的养殖知识,其中也会对目前光伏组件的规格都哪些(光伏组件规格表)进行专业解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

目前光伏组件的规格都哪些

现在最常用的应该是250Wp/片

j2ee的规范一共有多少种? 都是哪些?

j2ee本身就是一种规范,简单来说j2ee是使用java进行企业级应用开发的一个规范体系,这个一共有多少种我觉得……似乎不存在这样的说法。
或者你是在问别的什么?

UI设计规范都有哪些

好的UI设计不仅是让软件变得有个性有品位,还要让软件的操作变得舒适简单、自由,充分体现软件的定位和特点。
1.简易性
界面的简洁是要让用户便于使用、便于了解产品,并能减少用户发生错误选择的可能性。
2.用户语言
界面中要使用能反映用户本身的语言,而不是游戏设计者的语言。
3.记忆负担最小化
人脑不是电脑,在设计界面时必须要考虑人类大脑处理信息的限度。人类的短期记忆有限且极不稳定,24小时内存在约25%的遗忘率。所以对用户来说,浏览信息要比记忆更容易。
4.一致性
它是每一个优秀界面都具备的特点。界面的结构必须清晰且一致,风格必须与产品内容相一致。
5.清楚
在视觉效果上便于理解和使用。
6.用户的熟悉程度
用户可通过已掌握的知识来使用界面,但不应超出一般常识。
7.从用户习惯考虑
想用户所想,做用户所做。用户总是按照他们自己的方法理解和使用。
通过比较两个不同世界(真实与虚拟)的事物,完成更好的设计。如:书籍对比竹简。
8.排列
一个有序的界面[1] 能让用户轻松的使用。
9.安全性
用户能自由的作出选择,且所有选择都是可逆的。在用户作出危险的选择时有信息介入系统的提示。
10.灵活性
简单来说就是要让用户方便的使用,但不同于上述。即互动多重性,不局限于单一的工具(包括鼠标、键盘或手柄、界面)。
11.人性化
高效率和用户满意度是人性化的体现。应具备专家级和初级玩家系统,即用户可依据自己的习惯定制界面,并能保存设置。
12.颜色不一样
UI设计师是随着网络而兴起的新兴设计行业,从事对软件的人机交互、操作逻辑、界面美观的整体设计工作
涉及范围包括商用平面设计、高级网页设计、移动应用界面设计及跨媒介设计以人为本,以用户体验需求为基础,发展多元化是目前中国信息产业中最为抢手的人才之一。

光伏组件生产流程是什么?

目前光伏组件的规格都哪些

A、工艺流程:
1、电池检测——2、正面焊接—检验—3、背面串接—检验—4、敷设(玻璃清洗、材料切割、玻璃预处理、敷设)——5、层压——6、去毛边(去边、清洗)——7、装边框(涂胶、装角键、冲孔、装框、擦洗余胶)——8、焊接接线盒——9、高压测试——10、组件测试—外观检验—11、包装入库;

B、工艺简介:
1、电池测试:由于电池片制作条件的随机性,生产出来的电池性能不尽相同,所以为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,做出质量合格的电池组件。

2、 正面焊接:是将汇流带焊接到电池正面(负极)的主栅线上,汇流带为镀锡的铜带,我们使用的焊接机可以将焊带以多点的形式点焊在主栅线上。焊接用的热源为一个红外灯(利用红外线的热效应)。焊带的长度约为电池边长的2倍。多出的焊带在背面焊接时与后面的电池片的背面电极相连。(我们公司采用的是手工焊接)

3、背面串接:背面焊接是将36片电池串接在一起形成一个组件串,我们目前采用的工艺是手动的,电池的定位主要靠一个膜具板,上面有36个放置电池片的凹槽,槽的大小和电池的大小相对应,槽的位置已经设计好,不同规格的组件使用不同的模板,操作者使用电烙铁和焊锡丝将“前面电池”的正面电极(负极)焊接到“后面电池”的背面电极(正极)上,这样依次将36片串接在一起并在组件串的正负极焊接出引线。

4、层压敷设:背面串接好且经过检验合格后,将组件串、玻璃和切割好的EVA 、玻璃纤维、背板按照一定的层次敷设好,准备层压。玻璃事先涂一层试剂(primer)以增加玻璃和EVA的粘接强度。敷设时保证电池串与玻璃等材料的相对位置,调整好电池间的距离,为层压打好基础。(敷设层次:由下向上:玻璃、EVA、电池、EVA、玻璃纤维、背板)。

5、组件层压:将敷设好的电池放入层压机内,通过抽真空将组件内的空气抽出,然后加热使EVA熔化将电池、玻璃和背板粘接在一起;最后**取出组件。层压工艺是组件生产的关键一步,层压温度层压时间根据EVA的性质决定。我们使用快速固化EVA时,层压循环时间约为25分钟。固化温度为150℃。

6、修边:层压时EVA熔化后由于压力而向外延伸固化形成毛边,所以层压完毕应将其切除。

7、 装框:类似与给玻璃装一个镜框;给玻璃组件装铝框,增加组件的强度,进一步的密封电池组件,延长电池的使用寿命。边框和玻璃组件的缝隙用硅酮树脂填充。各边框间用角键连接。

8、焊接接线盒:在组件背面引线处焊接一个盒子,以利于电池与其他设备或电池间的连接。

9、高压测试:高压测试是指在组件边框和电极引线间施加一定的电压,测试组件的耐压性和绝缘强度,以保证组件在恶劣的自然条件(雷击等)下不被损坏。

10、组件测试:测试的目的是对电池的输出功率进行标定,测试其输出特性,确定组件的质量等级。

什么是机械零件的设计准则

1、强度准则

要求机械零件的工作应力σ不超过许用应力[σ]。其典型的计算公式是:

(3-16)

σlim——极限应力,对受静应力的脆性材料取其强度极限,对受静应力的塑性材料取其屈服极限,对受变应力的零取其疲劳极限。

S——安全系数。

2.刚度准则

机械零件在受载荷时要发生弹性变形,刚度是受外力作用的材料、机械零件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来量度。机械零件的刚度取决于它的弹性模量E或切变模量G、几何形状和尺寸,以及外力的作用形式等。分析机械零件的刚度是机械设计中的一项重要工作。对于一些需要严格限制变形的零件(如机翼、机床主轴等),须通过刚度分析来控制变形。我们还需要通过控制零件的刚度以防止发生振动或失稳。另外,如弹簧,须通过控制其刚度为某一合理值以确保其特定功能。刚度准则是要求零件受载荷后的弹性变形量不大于允许弹性变形量。刚度准则的表达式为

(3–17)

y是弹性变形量,如挠度、纵向伸长(缩短):[y]为相应的许用弹性变形量。零件的弹性变形量可由理论计算或经实验得到,许用变形量则取决于零件的用途,根据理论分析或经验确定。

3.耐热性准则

由于摩擦等原因,机械在运转时,机械零件和润滑剂的温度一般会升高。过高的工作温度将导致润滑效果下降,同时,还会引起零件的热变形、硬度和强度下降,甚至损坏。如在高温时,金属机械零件可能发生胶合、卡死;塑料等非金属机械零件可能发生软化,甚至熔化等,在某些场合还会引起热应力。耐热性准则一般是控制机械零件的工作温度不要超过许用值,以保证零部件正常工作,其表达式是

(3–18)

为了改善散热性能、控制温升,必要时可以采用水冷或气冷等措施。

4. 振动稳定性准则

当激励的频率等于物体固有频率时,物体振幅最大,激励的频率与固有频率相差越大,物体的振幅越小。激励的频率接近物体的固有频率时,受迫振动的振幅会很大,这种现象叫做共振。振动稳定性指机械零件在机器运转时避免发生共振的品质。

为了延长机器的寿命,为了避免轴和机器的损坏,应验算轴的振动稳定性,特别是高速机器的轴。振动稳定性准则要求机械零件的固有频率应与激励的频率错开,保证不发生共振。

设机器中受激励作用的零部件的固有频率为f,激励力的频率为fp,一般要求

fp 1.15 f (3–19)

改变机械零件的刚度和质量可以改变其固有频率。增大机械零件的刚度和减小其质量,提高其固有频率;减小机械零件的刚度和增大其质量则降低机械零件的固有频率。有时,机器运转时为了防止共振要调节转速。

轴产生共振的主要原因是:由于材料内部质量不均匀,加之制造和安装的误差,使其质心和它的旋转中心产生偏差,轴旋转时产生惯性力,这个惯性力使转子作强迫振动。轴在引起共振时的速度称为临界速度。在临界速度下,这个惯性力的频率等于或几倍于转子的固有频率,因此发生共振。

5.寿命准则

为了保证机器在一定寿命期限内正常工作,在设计机械零件时必然要对机械零件的寿命提出要求。需要说明,在机器寿命期限内,零件是可以更换的,也就是说某些机械零件的寿命可以比机器的寿命短。机械零件的寿命主要受材料的疲劳、磨损和腐蚀影响。

为了避免发生零件疲劳引起的失效,如疲劳断裂,应根据机械零件寿命对应的疲劳极限计算疲劳强度。即根据寿命要求,结合零件转速等具体情况,根据式(3-6),计算出应力循环次数为N时的疲劳极限,再代入强度条件式,计算疲劳强度。当满足疲劳强度时,可以保证机械零件在破坏前的应力循环次数达到寿命要求。

磨损一般是不可避免的。在一定条件下,腐蚀也是不可避免的,如桥梁结构件、地埋钢质管道的腐蚀等。在设计时,主要是保证机械零件在寿命内,不要发生过度的磨损和腐蚀。磨损发生的机理尚为完全被人们掌握,影响磨损的因素也比较多,一般根据摩擦学设计原理来改善摩擦副的耐磨性。主要措施有:合理选择摩擦副材料;合理选择润滑剂和添加剂;控制摩擦副的工作条件,如压强、滑动速度和温升。

到目前为止,还没有实用、有效的腐蚀寿命计算方法,通常从材料选择及防腐处理方面采取措施。如选用耐腐蚀的材料,采用表面镀层、喷涂、磷化等处理。

6. 可靠性准则

可靠性是产品在规定的条件下和规定的时间内,完成规定功能的能力。产品的质量一般应包含性能指标和可靠性指标。机械产品的性能指标是指产品具有的技术指标,如机械的功率、转矩、工作力、工作速度等。如果只有性能指标,没有可靠性指标,产品的性能指标也得不到保证。例如,一台技术先进的飞机,如果可靠性不高,势必经常发生故障,影响正常飞行和增加维修费用,甚至可能造成严重的事故。产品的可靠性用可靠度R(t)来衡量。可靠度的定义是:产品在规定的条件下和规定的时间内完成规定功能的概率。可靠度是时间的函数。有一批数量为n的相同产品,在t=0开始工作,随着时间的延续,失效的件数no(t)在加大,正常工作的件数ni(t)在减少,在任意时刻t产品可靠度为

(3–20)

若某产品工作至3000小时的可靠度R(t)=0.96,则表示有96%的产品可以正常工作到3000小时以上,对具体一件产品来讲,其工作到3000小时的概率为96%。

失效率 指产品工作到t时刻,在下阶段 的单位时间内发生失效的概率,可以证明,其数学表达式为

(3–21)

分离变量,两边积分,得

(3–22)

零部件的失效率和时间的关系一般如图3-13所示。可以用试验的方法求得失效率曲线。失效率曲线反映产品总体寿命期失效率的情况。从失效曲线可以看出,失效大体可以分为三个阶段。

图3-15

第Ⅰ阶段为早期失效阶段,曲线为递减型。产品投入使用的早期,失效率较高而下降很快。其原因主要是设计、制造、贮存、运输等形成的**,以及调试、跑合、起动不当等人为因素所造成的。当这些由于先天**引起的失效发生后,设备运转逐渐正常,则失效率就趋于稳定。应该尽量设法避免零件的早期失效,降低失效率和早期失效阶段的时间t0。

第Ⅱ阶段为偶然失效阶段,其失效率缓慢增长。失效主要由非预期的过载、误操作、意外的天灾等偶然因素所造成。由于失效原因多属偶然,故称为偶然失效阶段。降低偶然失效期的失效率则能提高有效寿命,所以应注意提高产品的质量,精心使用维护。

第Ⅲ阶段为损坏失效阶段,其失效率是递增型。在t1以后失效率明显上升。这是由于产品已经老化,疲劳、磨损、蠕变、腐蚀等所谓有耗损的原因所引起的,故称为耗损失效期。针对这一阶段失效的原因,应该注意检查、监控等,提前维修,使失效率仍不上升。

7. 精度准则

对于高精度的机械零件、机构或设备,要求其运动误差小于许用值。例如在精密机械中,导轨的直线性误差、主轴的径向跳动误差、齿轮传动的转角误差等,必须要有一定的精度要求。可以根据机器和零件的功能要求,选用合适的公差与配合,即进行精度设计,并能正确地标注到图样上。还可以按照零件图给定的公差值,求出机构的误差,与要求的机构精度比较。

这里还有一篇更全的文章,就是太多了给你个网址

http://wenku.baidu.com/view/e22319649b6648d7c1c746f6.html

IPC-A-610D标准有什么?

IPC-A-610,电子装配可接收性,作为电子装配的标准,为人们广泛地接受,其焦点是集中在焊点上面。二OO五年二月,IPC发行了期待已久的更新版本:IPC-A-610 D版。 IPC-A-610有一个伙伴文件:ANSI/J-STD-001,焊接电气和电子装配的要求。J-STD-001建立了焊接电子装配的最低可接收要求。IPC-A-510呈现的是在J-STD-001内所建立的要求的图片解释。也提供了其它与工作质量相关的主题,如处理方法和机械装配。IPC-A-610可作为一个**文件使用,但它不包括诸如检查频率或允许的过程指示器的数量等主题。这些主题包含在J-STD-001内。 有几个焦点在设计上的、IPC-A-610和J-STD-001的伙伴文件:IPC-SM-782,表面贴装焊盘布局(Surface Mount Land Patterns);IPC-2221,印刷板设计的普通标准(Generic Standard on Printed board Design);和IPC-2222,刚性PWB设计的局部标准(Sectional Standard on Rigid PWB Design)。如果设计没有遵循这些文件,那么IPC-A-610和J-STD-001建立的要案求就不能应用,因为焊接点的形成直接受焊盘布局设计的影响。如果焊盘布局和IPC-SM-782有很大的不同,那么IPC-A-610所定义的焊点形状就不能达到。IPC-A-600,印刷板的可接受性(Acceptability of Printed Board),是另外一个重要的伙伴文件。 更新IPC-A-610 D版的原始理由是澄清现存的要求和增加新的技术。尽管如此,在工作小组开始修改过程时,他们发现了J-STD-001与IPC-A-610之间的几个冲突。小组决定多花一些时间和通过修正J-STD-001(C 版在二OOO年三月发行)来改正这些冲突,将会给电子制造工业带来实惠。这些改进将会减少误释、增加理解和减少要求用来适当解释这些文件的培训数量。IPC工艺标准含有一些基本的概念,其中一些在这里作简要的讨论。要得到更多的专门或详细的信息,请参考IPC-A-610和J-STD-001。 分类(Classification)。建立了三类产品:第一类,通用电子产品,其目的是针对消费电器;第二类,精良服务电子产品,针对商用电器;第三类,高性能电子产品,针对那些失效为严重关注的应用产品。 目标条件(target condition)。基本上就是可希望的条件(通常叫做“优先的”)。高度希望的和接近完美的,但并非绝对需要用来保证在所针对的使用环境(第1、2或3类)中的可靠运行和性能。 可接收条件(acceptable condition)。保证在所针对的使用环境中的可靠运行和性能。可它不是完美的或理想的。 失效条件(defect condition)。即可能不足以保证在所针对的使用环境中的可靠运行和性能。 过程指示器条件(process indicator condition)。即报警条件,不是失效。所有条件足够保证在所针对的使用环境中的可靠运行和性能。可是,当过程指示器显示异常变化或发现不希望的趋势时,必须分析过程,以减少变化。 在D版中,段落和条款的标题已得到仔细推敲,所以目录表容易浏览,也增加了检索。段落从10到12重新编号,通用格式已改变使其用户友好。不包含视觉参考的可接受性陈述已被删除或改变为介绍性的注释。增加了英制度量来协调已建立的IPC文件政策。公制是度量的主要方法,英制在括号内提供。 以下列出有D版的一些变动、增加和删除: 静电放电控制(ESD, Electrostatic discharge control)。ANSI/ESD-20.20,由ESD协会发布,现在推荐为ESD信息的原本文件。 最小电气间隙(minimum electrical clearance)。“不与最小电气间隙冲突”的陈述难于理解。这个通过阐述“过多的焊锡或引脚突出可能减少间隙”来澄清。IPC-2221 6.3条作为一条附录加入,以帮助对最小电气间隙的评估。 焊锡圆角厚度(solder fillet thickness)。尺寸G,焊锡圆角厚度,对所有的端点和分类作了改变,“显示良好的熔湿的证据”。 立桩胶剂(staking adhesive)。当端子区域可见立桩胶,但焊点连接满足最低要求时,对第一类和第二类的过程指示器是可接收的。对第三类,当端子上可见任何胶剂时,都是一个**。 片状元件、过锡面的端子(chip component, secondary-side terminations)。当有明显的Y轴方向的尾部悬垂B时,对任何一类都是**。尾端焊接点宽度C改变为W或P的75%,取最小的那个。 片状元件、矩形或方形端头(chip component, rectangle or square end) 。焊点侧长D和最小圆角高度F(第2类)改变为“要求适当的熔湿圆角”。 圆柱尾帽端子(Cylindrical end cap termination)。尾部搭接J改变为第1、2类的50%,第3类的75%。 扁平带状、L和翅形引脚(flat ribbon, L and gull-wing leads)。对第1类的最小焊点侧面长度D改变为包括一个0.5mm的最小涵点侧面长度;对第2、3类增加了关于怎样测量侧面焊点长度的信息。它要求侧面焊点长度最少为引脚长度L的75%。最大脚跟圆角高度E澄清了元件高/低轮廓的术语,删除了有关与最小电气间隙相冲突的标准,和不能决定是否适当熔湿的情况,最小脚跟圆角高度F对所有类别应该延伸到脚趾朝下形状的外侧引脚弯曲的中点处。 圆形或扁平引脚(round or flatten leads)。对最大圆角高度E的解释,消除了有关冤家元件高/低轮廓的混乱。最小脚跟圆角高度F对所有类别应该至少延伸到脚趾朝下形状的外侧引脚弯曲的中点处。 J形引脚(J leads)。删除了“由于设计原因而缺乏可熔湿边的引脚,不要求有侧面圆角”的陈述。 I形焊接点(butt or I joints)。最大的圆角高度E用来消除有关元件高/低轮廓术语的混乱,以及对42号合金引脚的标准被删除。 片状元件贴装变量(chip component mounting variation)。对第1、2类,侧面装贴是可接受的,而第3类不可接受。将沉淀的电气元素贴装在板面对第1类是可接受的,对第2、3类是一个国过程指示器。 元件损伤(component damage)。对SMT元件损伤增加了新的或澄清的标准。例如,断裂和片状外突(chip-out)。 SMT异常(SMT anomalies)。增加了有关墓碑(tombstoning)、共面性(coplanarity)、锡膏回流(solder paste reflow)、不熔湿(nonwetting)、去湿(dewetting)、紊锡(disturbed solder)、裂锡(ractured solder)、**(pinholes)、吹气孔(blowholes)、锡桥(bridging)、锡球(solder balls)和锡带(solder webbing)的信息。 增加了下列元件类型的信息:平耳引脚(flat-lug leads)、只有底面端子的高轮廓元件、向内成型的L形带状引脚、区域列阵或球栅列阵元件(BGA)。 总之,IPC-A-610 D版在C版的基础上有重要的改进。发展委员会的成员们已经仔细地找出那些将澄清关键主题和消除混乱的

采纳哦

太阳能光伏发电技术的相关标准,规范有哪些

您说的太阳能光伏发电技术,范围太大,设计的产业太广,标准也很多!
1、光伏电池片、组件技术标准;
2、***标准;
3、逆变器标准;
4、系统设计标准;
5、交、直流配电箱标准;
等等,您可以去CQC官网,TUV官网下载!

站长微信号

微信扫一扫加好友

返回
顶部