今天养殖艺技术网的小编给各位分享估计标准是什么的养殖知识,其中也会对评价估计量的标准有哪些?并解释它们的含义(评价估计量的标准有什么)进行专业解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!
评价估计量的标准有哪些?并解释它们的含义
一个好的估计量应具备三个标准:无偏性、有效性和一致性。
无偏性是指估计量分布的数学期望等于被估计的总体参数。有效性是指对同一总体参数的两个无偏估计量,有更小标准差的估计量更有效。一致性是指随着样本量的增大,点估计量的值越来越接近于被估总体的参数。
估计量用来估计未知总体的参数,它有时也被称为估计子;一次估计是指把这个函数应用在一组已知的数据集上,求函数的结果。对于给定的参数,可以有许多不同的估计量。我们通过一些选择标准从它们中选出较好的估计量,但是有时候很难说选择这一个估计量比另外一个好。
扩展资料:
显示估计值的集合与被估计单个参数的平均差异。试想下面的类比:假设“参数”是靶子的靶心,“估计量”是向靶子射箭的过程,而每一支箭则是“估计值”(样本)。
一致估计量序列是一列随着序号(通常是样本容量)无限增大时依概率收敛于被估量的估计量序列。换句话说,增加样本容量增大了估计量接近总体参数的概率。
一个人不断地抛**,随着次数的增多,任何一面出现的概率(机率)就会趋于0.5。那么这个0.5就是这个抛**事件中任何一面出现概率的一致估计量,或者说一致估计值。
参考资料来源:百度百科——估计量
评价估计量的标准有哪些?
在实际工作中,总体参数往往是未知的,需要使用样本统计量来估计总体参数。衡量估计量优劣的标准一般有以下三个:
1、无偏性:无偏性不是要求估计量与总体参数不得有偏差,因为这是不可能的,既然是抽样,必然存在抽样误差,不可能与总体完全相同。无偏性指的是如果对这同一个总体反复多次抽样,则要求各个样本所得出的估计量(统计量)的平均值等于总体参数。符合这种要求的估计量被称为无偏估计量。
2、有效性:估计量与总体之间必然存在着一定的误差,衡量这个误差大小的一个指标就是方差,方差越小,估计量对总体的估计也就越准确,这个估计量也就越有效。
3、一致性:一致性指的是当样本量逐渐增加时,样本的估计量(统计量)能够逐渐逼近总体参数。
参数估计的标准定义是什么?
参数估计
parameter estimation
根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。
估计量的评价标准:(1)无偏性,(2)一致性,(3)有效性,(4)充分性。
点估计是依据样本估计总体分布中所含的未知参数或未知参数的函数。通常它们是总体的某个特征值,如数学期望、方差和相关系数等。点估计问题就是要构造一个只依赖于样本的量,作为未知参数或未知参数的函数的估计值。例如,设一批产品的废品率为θ。为估计θ,从这批产品中随机地抽出n个作检查,以X记其中的废品个数,用X/n估计θ,这就是一个点估计。构造点估计常用的方法是:①矩估计法。用样本矩估计总体矩,如用样本均值估计总体均值。②最大似然估计法。于1912年由英国统计学家R.A.费希尔提出,利用样本分布密度构造似然函数来求出参数的最大似然估计。③最小二乘法。主要用于线性统计模型中的参数估计问题。④贝叶斯估计法。基于贝叶斯学派(见贝叶斯统计)的观点而提出的估计法。可以用来估计未知参数的估计量很多,于是产生了怎样选择一个优良估计量的问题。首先必须对优良性定出准则,这种准则是不唯一的,可以根据实际问题和理论研究的方便进行选择。优良性准则有两大类:一类是小样本准则,即在样本大小固定时的优良性准则;另一类是大样本准则,即在样本大小趋于无穷时的优良性准则。最重要的小样本优良性准则是无偏性及与此相关的一致最小方差无偏估计,其次有容许性准则,最小化最大准则,最优同变准则等。大样本优良性准则有相合性、最优渐近正态估计和渐近有效估计等。
区间估计是依据抽取的样本,根据一定的正确度与精确度的要求,构造出适当的区间,作为总体分布的未知参数或参数的函数的真值所在范围的估计。例如人们常说的有百分之多少的把握保证某值在某个范围内,即是区间估计的最简单的应用。1934年统计学家J.奈曼创立了一种严格的区间估计理论。求置信区间常用的三种方法:①利用已知的抽样分布。②利用区间估计与假设检验的联系。③利用大样本理论。
什么是估计标准误差
抽样估计的优良标准是什么?
抽样估计的优良标准应满足以下三个方面的条件:
无偏性。即要求所有可能样本指标的平均数(样本指标的数学期望)与被估计的总体参数之间没有偏差。虽然每一次的样本指标值和总体指标值之间都可能有误差,但在多次反复的估计中,所有抽样指标值的平均数应该等于所估计的总体指标值本身,即用样本指标去估计总体参数,平均说来是没有偏误的。
一致性。用统计量估计总体参数要求当样本的单位数充分大时,抽样指标也充分地靠近总体指标。就是说,随着样本单位数n的无限增加,统计量和未知的总体参数之差的绝对值小于任意小的数,它的概率也趋近于1,即实际上是几乎肯定的。
有效性。以统计量估计总体参数时,优良估计量的方差应该比其他估计量的方差小。例如用样本平均数或总体某一变量值来估计总体平均数,虽然两者都是无偏的,而且在每一次估计中,两种估计量和总体平均数都可能有离差,但样本平均数更靠近于总体平均数的周围,平均说来其离差比较小。所以对比说来,抽样平均数是更为有效的估计量。
抽样估计的优良标准是什么?
抽样估计的优良标准应满足以下三个方面的条件:
无偏性。即要求所有可能样本指标的平均数(样本指标的数学期望)与被估计的总体参数之间没有偏差。虽然每一次的样本指标值和总体指标值之间都可能有误差,但在多次反复的估计中,所有抽样指标值的平均数应该等于所估计的总体指标值本身,即用样本指标去估计总体参数,平均说来是没有偏误的。
一致性。用统计量估计总体参数要求当样本的单位数充分大时,抽样指标也充分地靠近总体指标。就是说,随着样本单位数n的无限增加,统计量和未知的总体参数之差的绝对值小于任意小的数,它的概率也趋近于1,即实际上是几乎肯定的。
有效性。以统计量估计总体参数时,优良估计量的方差应该比其他估计量的方差小。例如用样本平均数或总体某一变量值来估计总体平均数,虽然两者都是无偏的,而且在每一次估计中,两种估计量和总体平均数都可能有离差,但样本平均数更靠近于总体平均数的周围,平均说来其离差比较小。所以对比说来,抽样平均数是更为有效的估计量。