今天养殖艺技术网的小编给各位分享海缆故障原因有哪些的养殖知识,其中也会对为什么海底光缆如此脆弱?(海底光缆为什么能传输这么远)进行专业解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

为什么海底光缆如此脆弱?

  1998年3月7日,世界上首条主要为互联网服务的海底光缆开通,把纽约和伦敦连接了起来。海底光缆系统分为岸上设备和水下设备两大部分。岸上设备将语音、图像、数据等我们所要传输的信息统一整合起来。水下设备负责通信信号的处理、发送和接收。这么重要的设备,它的直径只有10厘米不到,非常脆弱。即使它沉在数千米的海底,却依然不能避免损坏的遭遇。这是为什么呢?

  2003年10月,一艘渔船起锚时的拉拽,致使通往崇明岛的海底光缆被意外拉断。这一意外事件造成崇明岛上至少3万户有线电视用户信号接收受阻,持续了近4天时间。

  铺设海底光缆示意图

为什么海底光缆如此脆弱?

  海底光缆,是铺设在海底的用绝缘材料包裹的导线,通常埋在海床下1~2米深的地方,用以建立跨越海洋的电信传输。近些年海底光缆“**”的现象时有发生,海底光缆的脆弱性令人担忧。

  海底电缆

  海底光缆为什么如此脆弱呢?就拿海底光缆隐患最严重的亚洲环太平洋地区来说,这个地区是世界地震多发区之一,地震时海底光缆很容易发生位移或断裂。近海的海缆事故绝大多数是由于渔业捕捞、船只抛锚等海上作业活动引起的,尤其是一些捕捞船上帆张网用的大铁锚最危险。这种铁锚有两三吨重,而所谓的“帆张网”,就是拿这个大铁锚拽着一个巨大的帆布“降落伞”投进海里,铁锚要是挂上海底光缆,随时可能将海底光缆扯断。

  每年都有海底光缆断裂事故发生,东海和黄海在上海**的光缆中有好几条海底光缆都是断过后又重新接好的。曾经断过的海底光缆,就更加脆弱了。修复过的光缆会虚浮在海底,更容易被下到海底的铁锚或者其他东西弄坏。20世纪80年代末还发生过深海光缆的聚乙烯绝缘体被鲨鱼咬坏造成供电故障的实例。

常见的电缆故障有哪些?

电缆金属部分的连续性受到破坏,形成断线,且故障点的绝缘材料也受到不同程度的破坏。缆绝缘材料受到损伤,出现接地故障、出现闪络故障。等

常见的电缆故障原因有哪些

  对于电力维修人员来说,他们最常遇到的一个最麻烦的问题就是电缆出现了故障,因为电缆是一个连续而长的电线,因此如果电缆发生了故障的话,一般来说是非常难进行检测和维修的。但是随着科技的发展,想要对电缆进行故障维修已经变得越来越简单,那么接下来小编就来给大家介绍一下造成电缆故障的原因以及有关电缆维修的一些方法吧。

  

  原因

  电缆故障的最直接原因是绝缘降低而被击穿。导致绝缘降低的因素很多,根据实际运行经验,归纳起来不外乎以下几种情况:

  1、外力损伤。由近几年的运行分析来看,尤其是在经济高速发展中的海浦东,现在相当多的电缆故障都是由于机械损伤引起的。比如:电缆敷设安装时不规范施工,容易造成机械损伤;在直埋电缆上搞土建施工也极易将运行中的电缆损伤等。有时如果损伤不严重,要几个月甚至几年才会导致损伤部位彻底击穿形成故障,有时破坏严重的可能发生短路故障,直接影响电用电单位的安全生产。

  2、绝缘受潮。这种情况也很常见,一般发生在直埋或排管里的电缆接头处。比如:电缆接头制作不合格和在潮湿的气候条件下做接头,会使接头进水或混入水蒸气,时间久在电场作用下形成水树枝,逐渐损害电缆的绝缘强度而造成故障。

  3、化学腐蚀。电缆直接埋在有酸碱作用的地区,往往会造成电缆的铠装、铅皮或外护层被腐蚀,保护层因长期遭受化学腐蚀或电解腐蚀,致使保护层失效,绝缘降低,也会导致电缆故障。

  4、长期过负荷运行。超负荷运行,由于电流的热效应,负载电流通过电缆时必然导致导体发热,同时电荷的集肤效应以及钢铠的涡流损耗、绝缘介质损耗也会产乍附加热量,从而使电缆温度升高。长期超负荷运行时,过高的温度会加速绝缘的老化,以至绝缘被击穿。尤其在炎热的夏季,电缆的温升常常导致电缆绝缘薄弱处首先被击穿,因此在夏季,电缆的故障也就特别多。

  5、电缆接头故障。电缆接头是电缆线路中最薄弱的环节,由人员直接过失(施工**)引发的电缆接头故障时常发生。施工人员在制作电缆接头过程中,如果有接头压接不紧、加热不充分等原网,都会导致电缆头绝缘降低,从而引发事故。

  6、环境和温度。电缆所处的外界环境和热源也会造成电缆温度过高、绝缘击穿,甚至**起火。

  7、电缆本体的正常老化或自然灾害等其他原因。

  

  类型

  电缆故障可概括为接地、短路、断线三类,其故障类型主要有以下几方面:

  1、三芯电缆一芯或两芯接地。

  2、二相芯线间短路。

  3、三相芯线完全短路。

  4、一相芯线断线或多相断线。

  

  维修方法

  对于直接短路或断线故障用万用表可直接测量判断;对于非直接短路和接地故障,用兆欧表遥测芯线间绝缘电阻或芯线对地绝缘电阻,根据其阻值可判断故障类型。

  1、零电位法

  零电位法也就是电位比较法,它适应于长度较短的电缆芯线对地故障,应用此方法测量简便精确,不需要精密仪器和复杂计算。测量原理如下:将电缆故障芯线与等长的比较导线并联,在b、c两端加电压VE时,相当于在两个并联的均匀电阻丝两端接了电源,此时,一条电阻丝上的任何一点和另一条电阻丝上的对应点之间的电位差必然为零,反之,电位差为零的两点必然是对应点。因为微伏表的负极接地,与电缆故障点等电位,所以,当微伏表的正极在比较导线上移动至指示值为零时的点与故障点等电位,即故障点的对应点。S为单相闸刀开关,E为6E蓄电池或4节1号干电池,G为直流微伏表,测量步骤如下:

  1)先在b和c相芯线上接上电池E,再在地面上敷设一根与故障电缆长度相等的比较导线S,该导线要用*铜线或*铝线,其截面应相等,不能有中间接头。

  2)将微伏表的负极接地,正极接一根较长的软导线,导线另一端要求在敷设的比较导线上滑动时能充分接触。

  3)合上闸刀开关S,将软导线的端头在比较导线上滑动,当微伏表指示为零时的位置即为电缆故障点的位置。

  2、电桥法

  电桥法就是用双臂电桥测出电缆芯线的直流电阻值,再准确测量电缆实际长度,按照电缆长度与电阻的正比例关系,计算出故障点。该方法对于电缆芯线间直接短路或短路点接触电阻小于1Ω的故障,判断误差一般不大于3m,对于故障点接触电阻大于1Ω的故障,可采用加高电压烧穿的方法使电阻降至1Ω以下,再按此方法测量。测量电路时,首先测出芯线a与b之间的电阻R1,R1=2RX+R其中RX为a相或b相至故障点的一相电阻值,只为短接点的接触电阻。再就电桥移到电缆的另一端,测出a1与b1芯线间的直流电阻值R2,则R2=2R(L-X) R,R(L-X)为a1相或b1相芯线至故障点的一相电阻值。测完R1与R2后,再按图3所示电路将b1与c1短路,测出b、c两相芯线间的直流电阻值,则该组织的1/2为每相芯线的电阻值,用RL表示,RL=RX R(L-X),由此可得出故障点的接触电阻值:R=R1R2-2RL表,因此,故障点两侧芯线的电阻值可用下式表示:RX=(R1-R)/2,R(L-X)=(R2-R)/2。RX、R(L-X)、RL三个数值确定后,按比例公式即可求出故障点距电缆端头的距离X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L为电缆的总长度。采用电桥法时应保证测量精度,电桥连接线要尽量短,线径要足够大,与电缆芯线连接要采用压接或焊接,计算过程中小数位数要全部保留。

  3、电容电流测定法

  电缆在运行中,芯线之间,芯线对地都存在电容,该电容是均匀分布的,电容量与电缆长度呈线性比例关系,电容电流测定法就是根据这一原理进行测定的,对于电缆芯线断线故障的测定非常准确。测量电路如图4所示,使用设备为1-2kVA单相调压2S一台,1~100mA、0。5级交流毫安表一只。测量步骤:

  1)首先在电缆首端分别测出每相芯线的电容电流(应保持施加电压相等)Ia、Ib、Ic的数值。

  2)在电缆的末端在测量每相芯线的电容电流Ia1、Ib2、Ic3的数值,以核对完好芯线与断线芯线的电容之比,初步可判断出断线距离近似点。

  3)根据电容量计算公式C=I/(2ΠfU)可知,正电压U、频率f不变时,C与I成正比。因为工频电压的f(频率)不变,测量时只要保证施加电压不变,电容电流之比即为电容量之比。设电缆全长为L,芯线断线点距离为X,则Ia/Ic=L/X,X=(IC/Ia)L。测量过程中,只要保证电压不变,电流表读书准确,电缆总长度测量精确,其测定误差比较小。

  4、测声法

  所谓测声法就是根据故障电缆放电的声音进行查找,该方法对于高压电缆芯线对绝缘层闪络放电较为有效。此方法所用设备为直流耐压试验机。其中TB为高压试验变压器,C为高压电容器,VE为高压整流硅堆,R为限流电阻,Q为放电球间隙,L为电缆芯线。当电容器C充电到一定电压值时,球间隙对电缆故障芯线放电,在故障处电缆芯线对绝缘层放电产生“滋、滋”的火花放电声,对于明敷设电缆凭听觉可直接查找,若为地埋电缆,则首先要确定并标明电缆走向。在杂音最小时,借助耳聋***或医用听诊器等音频放大设备进行查找。查找时,将拾音器贴近地面,沿电缆走向慢慢移动,当听到“滋、滋”放电声最大时,该处即为故障点。使用该方法一定要注意安全,在试验设备端和电缆末端应设专人监视。

  

  总结:小编在上文中为大家介绍了电缆故障出现的原因,一般来说电缆故障就有内因,也有外因。一般来说,内因就是遭受到了一些外力的破坏,而外因更多是因为我们的超负荷使用造成的电缆故障。给大家介绍了电缆故障的原因,以后小编还给大家介绍了电缆故障维修的方法,其中最主要的介绍的就是如何确定电缆故障位置的方法,让大家能够更好的了解。

35KV变电站里零序电压定值是多少?零序电压跟运行方式有关系?

正常运行时零压接近零而不等于零,系统发生故障三项电压不对称的时候才会出现零压。

必须把电压升高,变为高压电,到用户附近再按需要把电压降低,这种升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。

当中性点直接接地系统(又称大电流接地系统)中发生接地短路时,将出现很大的零序电流。还有在中性点不直接接地系统(经高阻抗接地系统或经消弧线圈接地系统)中当发生单相接地时,也会产生零序电压。

扩展资料:

建筑物底层的附属10 kV变电站不需分室,变压器及高低压开关柜可同层同室布置,仅需保持特定间距,具有专有建筑物的35 kV**变电站应按照功能分层分室布置。

分室布置变电站应合理布置站内各功能室的位置,高压配电室与高压电容器室相邻,低压配电室与变压器室相邻,低压配电室应便于出线,控制室位置应便于运行人员的工作与管理。

当中性点直接接地系统(又称大接地电流系统)中发生接地短路时,将出现很大的零序电压和电流。还有在中性点不直接接地系统中当发生单相接地时,也会产生零序电压。

零序电源在故障点,故障点的零序电压最高,系统中距离故障点越远处的零序电压就越低,取决于测量点到大地间阻抗的大小。

参考资料来源:百度百科--变电站

参考资料来源:百度百科--零序电压

电缆故障的产生原因有哪些

电缆故障的原因大致可归纳为以下8类:

1. 机械损伤导致电缆故障 安装时损伤:在安装时不小心碰伤电缆,机械牵引力过大而拉伤电缆,或电缆过度弯曲而损伤电缆;

直接受外力损坏:在安装后电缆路径上或电缆附近进行城建施工,使电缆受到直接的外力损伤;行驶车辆的震动或冲击性负荷会造成**电缆的铅(铝)包裂损;因自然现象造成的损伤:如中间接头或终端头内绝缘胶膨胀而胀裂外壳或电缆护套;因电缆自然行程使装在管口或支架上的电缆外皮擦伤;因土地沉降引起过大拉力,拉断中间接头或导体。

2. 绝缘受潮致电缆故障 绝缘受潮后引起故障。造成电缆受潮的主要原因有:因接头盒或终端盒结构不密封或安装**而导致进水;电缆制造**,金属护套有小孔或裂缝;金属护套因被外物刺伤或腐蚀穿孔;

3. 绝缘老化变质致电缆故障 电缆绝缘介质内部气隙在电场作用下产生游离使绝缘下降。当绝缘介质电离时,气隙中产生臭氧、硝酸等化学生成物,腐蚀绝缘;绝缘中的水分使绝缘纤维产生水解,造成绝缘下降。

过热会引起绝缘老化变质。电缆内部气隙产生电游离造成局部过热,使绝缘碳化。电缆过负荷是电缆过热很重要的因素。安装于电缆密集地区、电缆沟及电缆隧道等通风**处的电缆、穿在干燥管中的电缆以及电缆与热力管道接近的部分等都会因本身过热而使绝缘加速损坏。

4. 过电压导致电缆故障 大气与内部过电压作用,使电缆绝缘击穿,形成故障,击穿点一般是存在**。

5. 设计和制作工艺**导致电缆故障 中间接头和终端头的防水、电场分布设计不周密,材料选用不当,工艺**、不按规程要求制作会造成电缆头故障。

6. 材料**导致电缆故 材料**主要表现在三个方面。一是电缆制造的问题,铅(铝)护层留下的**;在包缠绝缘过程中,纸绝缘上出现褶皱、裂损、破口和重叠间隙等**;二是电缆附件制造上的**,如铸铁件有砂眼,瓷件的机械强度不够,其它零件不符合规格或组装时不密封等;三是对绝缘材料的维护管理不善,造成电缆绝缘受潮、脏污和老化。

7. 护层导致电缆故障 由于**酸碱腐蚀、杂散电流的影响,使电缆铅包外皮受腐蚀出现麻点、开裂或穿孔,造成故障。

8. 电缆的绝缘物流失导致电缆故障 油浸纸绝缘电缆敷设时地沟凸凹不平,或处在电杆上的户外头,由于起伏、高低落差悬殊,高处的绝缘油流向低处而使高处电缆绝缘性能下降,导致故障发生。

海底电缆是怎么回事

海底电缆:用绝缘材料包裹的电缆

电线电缆常见故障有哪些

上海宝宇电线电缆制造有限公司
  电线电缆线路常见的故障有机械损伤、绝缘损伤、绝缘受潮、绝缘老化变质、过电压、电缆过热故障等。当线路发生上述故障时,应切断故障电缆的电源,寻找故障点,对故障进行检查及分析,然后进行修理和试验,该割除的割除,待故障消除后,方可恢复供电。
  电缆故障最直接的原因是绝缘降低而被击穿.主要有:
  a、超负荷运行.长期超负荷运行,将使电缆温度升高,绝缘老化,以致击穿绝缘,降低施工质量.
  b、电气方面有:电缆头施工工艺达不到要求,电缆头密封性差,潮气侵入电缆内部,电缆绝缘性能下降;敷设电缆时未能采取保护措施,保护层遭破坏,绝缘降低.
  c、土建方面有:工井管沟排水不畅,电缆长期被水浸泡,损害绝缘强度;工井太小,电缆弯曲半径不够,长期受挤压外力破坏.主要是市政施工中机械野蛮施工,挖伤挖断电缆.
  d、腐蚀.保护层长期遭受化学腐蚀或电缆腐蚀,致使保护层失效,绝缘降低.
  e、电缆本身或是电缆头附件质量差,电缆头密封性差,绝缘胶溶解,开裂,导致站出现的谐振现象为线路断线故障使线路相间电容及对地电容与配电变压器励磁电感构成谐振回路,从而激发铁磁谐振.
  断线故障引起谐振的危害
  断线谐振在严重情况下,高频与基频谐振叠加,能使过压幅值达到相电压[P]的2.5倍,可能导致系统中性点位移,绕组及导线出现过压,严重时可使绝缘闪络,避雷器**,电气设备损坏.在某些情况下,负载变压器相序可能反转,还可能将过电压传递到变压器的低压侧,造成危害.
  防止断线谐振过压的措施
  防止断线谐振过压的主要措施有:
  (1)不采用熔断器,避免非全相运行.
  (2)加强线路的巡视和检修,预防断线的发生.
  (3)不将空载变压器长期挂在线路上.
  (4)采用环网或双电源供电.
  (5)在配变侧附加相间电容,
  其原理是:采用电容作为吸能元件来吸收暂态过程中的能量,从而降低冲击扰动强度以抑制谐振的发生.s一(o+ 3C,,) 1C.,在配变侧附加相间电容△C,使8一[Co+ 3(C U+ A0)/Ca增大,从而增大等值电容C和等值电动势Eo所需电容值可根据文献中方法求出.

光缆线路常见故障现象有哪些,可能原因是什么

第一,内在的因素,光纤光缆线路的绝缘性,若是其绝缘性能欠佳,这将一定会影响**影响。绝缘性欠佳,接头盒受潮或进水,就会由于应力腐蚀及静态疲劳等原因大幅度减小光缆的运作强度,严重的时候,可能会出现光缆断裂的情况,故障产生了。
第二,线路接头故障,这也是最容易产生问题的地方,因为其原本的光缆结构已不具备保护力或是减弱,它的若是想要正常进行工作,必须的依赖接头盒,因此减少接头故障,也就更好地保障了光纤线路的顺畅运行。
第三,外力因素,首先是雷力的冲击。布线系统中所使用到的所有网线都是有金属导体的,当其被雷击中,就会产生强大的电流,对光缆设备会造成破坏,严重的时候甚至会造**员伤亡。
第四,外力影响,这是由其布线环境造成的,光纤光缆的敷设一般都是在野外,并且其埋设的标准是深入**层以下,因此在这方面很难避免对光缆的损坏。

光缆常见的障碍现象和原因都有哪些

光缆障碍维修编辑光缆常见障碍原因障碍现象障碍的可能原因一根或几根光纤原接续点损耗增大光纤接续点保护管安装问题或接头盒漏水一根或几根光纤衰减曲线出现台阶光缆受机械力扭伤,部份光纤断裂但尚未折断开一根光纤出现衰台阶或断纤,
其它完好光缆受机械力影响或由于光缆制造原因造成原接续点衰减台阶水平拉长在原接续点附近出现断纤障碍通信全部阻断1.光缆受外力影响挖断、炸断或塌方拉断
2.供电系统中断光缆障碍点的查找在端点或中继站使用OTDR测试判断光缆线路障碍点的方法步骤大致如下:1)用OTDR测试出障碍点到测试端的大至距离,光纤光缆等相关的,我们习惯于使用菲尼特的,因为达标性价比高。

什么原因造成高压电缆故障

电缆故障性质的分类
电力电缆故障是由于电缆的绝缘损坏而引起的,一般故障的类型大体上分为两大类:低阻的短路、开路和断路故障;高阻的泄漏故障和闪络性故障.
一、低阻故障
凡是电缆故障点绝缘电阻下降至该电缆的特性阻抗,甚至直流电阻为零的故障均称为低阻故障或短路故障(注:这个定义是从采用脉冲反射法的角度,考虑到波阻抗不同对反射脉冲的极性变化的影响而下的.对于电桥法,低阻故障的定义不受特性阻抗概念的限制.)
这里给出一个电缆特性阻抗的参考值:
铝芯240m
㎡截面积的电力电缆的特性阻抗约为10ω;
铝芯35m
㎡截面积的电力电缆的特性阻抗约为40ω.
其余截面积的铝芯电力电缆的特性阻抗可据此估算.
凡是电缆绝缘电阻无穷大或虽正常电缆的绝缘电阻值相同,但电压却不能馈至用户端的故障均称为开路(断路)故障.

、高阻故障
电缆故障点的直流电阻大于该电缆的特性阻抗的故障均为高阻故障.
1、泄漏故障:在作电缆高压绝缘试验时,泄漏电流随试验电压的增加而增加.在试验电压升高到额定值时(有时还远远达不到额定值),泄漏电流超过允许值,称为高阻泄漏故障.
2、闪络性故障:试验电压升至某值时,监视泄漏电流的电表指值突然升高,表针且呈闪络性摆动,电压稍下降时,此现象消失,但电缆绝缘仍有极高的阻值,这表明电缆存在有故障.而这种故障点没有形成电阻信道,只有放电间隙或闪络表面的故障便称为闪络性故障.
一般的高阻故障点的性质,可用下图等效电路表示.

站长微信号

微信扫一扫加好友

返回
顶部