今天养殖艺技术网的小编给各位分享球标准方程公式是什么的养殖知识,其中也会对球的函数表达式是什么(球的函数表达公式)进行专业解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在我们开始吧!

球的函数表达式是什么

如果圆心为(a, b, c),半径为R,则表示为:

(x-a)²+(y-b)²+(z-c)²=R²

也可表示为参数方程,u,v为参数:

球的函数表达式是什么

x=a+Rcosu

y=b+Rsinucosv

z=c+Rsinusinv

用一个平面去截一个球,截面是圆面。球的截面有以下性质:

1 球心和截面圆心的连线垂直于截面。

2 球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2

扩展资料:

夹在两个平行平面之间的两个立体图形,被平行于这两个平面的任意平面所截,如果所得的两个截面面积相等,那么,这两个立体图形的体积相等。

∴若猜想成立,两个平面:S1(圆)=S2(环)

1.从半球高h点截一个平面 根据公式可知此面积为π×(r^2-h^2)^0.5^2=π×(r^2-h^2)

2.从圆柱做一个与其等底等高的圆锥:V锥 根据公式可知其右侧环形的面积为π×r^2-π×r×h/r=π×(r^2-h^2)

∵π×(r^2-h^2)=π×(r^2-h^2)

∴V柱-V锥=V半球

∵V柱-V锥=π×r^3-π×r^3/3=2/3π×r^3

∴V半球=2/3π×r^3

由V半球可推出V球=2×V半球=4/3×πr^3

证毕

参考资料:百度百科——球体

球的标准方程是什么

x^2/a^2+y^2/b^2+z^2/c^2=1这是椭球,不知道算不算.
我觉得应该是:
(x-a)²+(y-b)²+(z-c)²=R²
半径是R,球心坐标是(a,b,c)

已知球面方程的一般式,如何求半径啊?除了配方,有没有公式

已知球体的一般方程为:

x^2+y^2+z^2+Ax+By+Cz+D=0,

则半径为R=√((A²+B²+C²-4D)/4)

此公式也为方程配方所得,但可以直接套用,毋须写证明过程。

还可以使用极坐标来表示半径为r的球面:

x=x0+r sinθcosφ

y=y0+r sinθsinφ

z=z0+r cosθ

(θ的取值范围:0≤θ≤ n 和 - π <φ≤ π )

拓展资料:

此题所用的数学思想为数形结合。

数形结合就是把抽象的数学语言、数量关系等通过抽象与形象两种思维方式的充分结合,简化难题,从而使解题的思路和过程得到优化。

球面的问题即为几何问题中的立体几何问题。可以用坐标系的方法将抽象的点线面转化为代数问题大大简化了解题过程。

谁能帮忙总结一下几何部分圆的标准方程、概念性质 和 球的概念性质和公式阿,谢了。

圆的标准方程
X^2;+Y^2;=1 被称为1单位圆 x^2+y^2=r^2,圆心O(0,0),半径r; (x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。 确定圆方程的条件 圆的标准方程中(x-a)^2+(y-b)^2=r^2中,有三个参数a、b、r,只要求出a、b、r,这时圆的方程就被确定,因此确定圆方程,须三个**条件,其中圆心是圆的定位条件,半径是圆的定形条件。 确定圆的方程的方法和步骤 确定圆的方程主要方法是待定系数法,即列出关于a、b、r的方程组,求a、b、r,或直接求出圆心(a,b)和半径r,一般步骤为: 根据题意,设所求的圆的标准方程(x-a)^2+(y-b)^2=r^2; 根据已知条件,建立关于a、b、r的方程组; 解方程组,求出a、b、r的值,并把它们代入所设的方程中去,就得到所求圆的方程。
有关圆所有概念,性质
【数学中的“圆”】
〖圆的定义〗

几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。

〖圆的相关量〗

圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值。

圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

〖圆和圆的相关量字母表示方法〗

圆—⊙ 半径—r 弧—⌒ 直径—d
扇形弧长/圆锥母线—l 周长—C 面积—S

〖圆和其他图形的位置关系〗

圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。




【圆的平面几何性质和定理】
〖有关圆的基本性质与定理〗

圆的确定:不在同一直线上的三个点确定一个圆。

圆的对称性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

〖有关圆周角和圆心角的性质和定理〗

在同圆或等圆中,如果两个圆心角,两个圆周角,两条弧,两条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

一条弧所对的圆周角等于它所对的圆心角的一半。

直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

〖有关外接圆和内切圆的性质和定理〗

一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

〖有关切线的性质和定理〗

圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

切线判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:(1)经过圆心垂直于这条半径的直线是圆的切线。(2)经过切点垂直于切线的直线必经过圆心。(3)圆的切线垂直于经过切点的半径。

切线的长定理:从圆外一点到圆的两条切线的长相等。

〖有关圆的计算公式〗

1.圆的周长C=2πr=πd 2.圆的面积S=πr² 3.扇形弧长l=nπr/180
4.扇形面积S=nπr²/360=rl/2 5.圆锥侧面积S=πrl

【圆的解析几何性质和定理】
〖圆的解析几何方程〗

圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。

圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。

圆的离心率e=0,在圆上任意一点的曲率半径都是r。

〖圆与直线的位置关系判断〗

平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:

当x=-C/Ax2时,直线与圆相离
当x1<x=-C/A<x2时,直线与圆相交
当x=-C/A=x1或x=-C/A=x2时,直线与圆相切
球的概念性质
“在空间内一中同长谓之球。” 集合定义:(1)在空间中到定点的距离等于或小于定长的点的集合叫做球体,简称球。 (2)在空间中到定点的距离等于定长的点的集合叫做球面即球的表面。 (3)定点叫球的球心,定长叫球的半径。
球的表面是一个曲面,这个曲面就叫做球面。 球和圆类似,也有一个中心叫做球心。
半圆以它的直径为旋转轴,旋转所成的曲面叫做球面。 球面所围成的几何体叫做球体,简称球。 半圆的圆心叫做球心。 连结球心和球面上任意一点的线段叫做球的半径。 连结球面上两点并且经过球心的线段叫做球的直径。 用一个平面去截一个球,截面是圆面。球的截面有以下性质: 1 球心和截面圆心的连线垂直于截面。 2 球心到截面的距离d与球的半径R及截面的半径r有下面的关系:r^2=R^2-d^2 球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆。 在球面上,两点之间的最短连线的长度,就是经过这两点的大圆在这两点间的一段劣弧的长度,我们把这个弧长叫做两点的球面距离。 半径是R的球的体积 计算公式是:V=(4/3)πR^3(三分之四乘以π乘以R的三次方)。 半径是R的球的表面积 计算公式是:S=4πR^2(4倍的π乘以R的二次方)。

站长微信号

微信扫一扫加好友

返回
顶部